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A B S T R A C T   

Longitudinal hippocampal atrophy is commonly used as progressive marker assisting clinical diagnose of de-
mentia. However, precise quantification of the atrophy is limited by longitudinal segmentation errors resulting 
from MRI artifacts across multiple independent scans. To accurately segment the hippocampal morphology from 
longitudinal 3T T1-weighted MR images, we propose a diffeomorphic geodesic guided deep learning method 
called the GeoLongSeg to mitigate the longitudinal variabilities that unrelated to diseases by enhancing intra- 
individual morphological consistency. Specifically, we integrate geodesic shape regression, an evolutional 
model that estimates smooth deformation process of anatomical shapes, into a two-stage segmentation network. 
We adopt a 3D U-Net in the first-stage network with an enhanced attention mechanism for independent seg-
mentation. Then, a hippocampal shape evolutional trajectory is estimated by geodesic shape regression and fed 
into the second network to refine the independent segmentation. We verify that GeoLongSeg outperforms other 
four state-of-the-art segmentation pipelines in longitudinal morphological consistency evaluated by test–retest 
reliability, variance ratio and atrophy trajectories. When assessing hippocampal atrophy in longitudinal data 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), results based on GeoLongSeg exhibit spatial and 
temporal local atrophy in bilateral hippocampi of dementia patients. These features derived from GeoLongSeg 
segmentation exhibit the greatest discriminatory capability compared to the outcomes of other methods in 
distinguishing between patients and normal controls. Overall, GeoLongSeg provides an accurate and efficient 
segmentation network for extracting hippocampal morphology from longitudinal MR images, which assist pre-
cise atrophy measurement of the hippocampus in early stage of dementia.   

1. Introduction 

Persistent hippocampal atrophy has been identified as a crucial in-
dicator of disease progression in dementia (Dubois et al., 2014; Frisoni 
et al., 2010; Hill et al., 2014). In-depth investigations into localized 
hippocampal atrophy have further revealed distinct patterns to specific 
dementia, such as the Alzheimer’s disease (Adler et al., 2018; Braak and 
Braak, 1997a; Braak and Braak, 1997b; Chauveau et al., 2021; Gabere 
et al., 2020; Kerchner et al., 2010; Martin et al., 2010; Scheff et al., 2007; 
Tang et al., 2015; Zhang et al., 2020). Currently, advanced automated 
quantification methods based on segmentation from 3T T1-weighted MR 
images allow for in-vivo measurement of morphological changes in the 

hippocampus. Segmentation methods leverage the relatively high 
contrast provided by these images, enabling delineation of the hippo-
campal contour. However, the segmentation of the hippocampal 
boundary can be adversely affected by various signal variations unre-
lated to disease progression, such as the head motion, changes in slice 
orientation, susceptibility artifacts, and differences in scanner hardware 
and software (Dong MJ et al., 2021). These factors can introduce erro-
neous quantification of longitudinal morphological changes. For 
instance, one may detect cortical thickening in regions where cortical 
thinning actually occurs. 

The observed morphology from MRI is a combination of disease- 
related anatomical changes and independent noise-induced variations. 
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The hippocampal morphology affected by dementia remains relatively 
stable for the same subject, exhibiting smooth and continuous anatom-
ical changes. However, independent image noises introduce variations 
within the time-series of hippocampal intensity and lead to non-smooth 
boundaries variations from images. To overcome the issue, recent 
methodologies have been developed to minimize the influence of this 
error by incorporation of within-subject references in segmentation of 
longitudinal images (Brown EM et al., 2020; Das SR et al., 2012; Iglesias 
JE et al., 2016; Li H et al., 2021; Muralidharan P et al., 2014; Platero C 
et al., 2019; Shaw T et al., 2020). These methodologies can be broadly 
classified into three categories. First, the Deformation-Based 
Morphometry (DBM) methods, such as the ALOHA (Das SR et al., 
2012), LASHiS (Shaw T et al., 2020) and Freesurfer longitudinal pipeline 
(Iglesias JE et al., 2016), utilize diffeomorphic deformations of initial 
segmentation results to calibrate segmentation form independently 
observed images. The second is to involve a post-processing technique 
that employ a shape growth model after the initial segmentation stage. 
(Muralidharan P et al., 2014) have shown that this approach effectively 
reduces within-subject variability. These methods have demonstrated 
significant improvements in estimating longitudinal volume changes 
and are considered state-of-the-art for longitudinal atrophy estimation. 
However, the DBM methods face large computational burden, which are 
further exacerbated by an additional process required for longitudinal 
correction. Moreover, a significant challenge in both approaches is the 
limited consideration of boundary information conveyed by image in-
tensity in the final segmentation. The third approach is a deep learning- 
based method that incorporates previous information to enhance 
learning ability, such as proposed by Li et al. (2021). This method en-
ables efficient and accurate hippocampal segmentation, with a primary 
focus on dice accuracy, but lacks demonstration of longitudinal 
morphological consistency. Above all, in addition to efficiency, it is 
crucial to strike a balance between the boundary information inferred 
from image intensity and the trajectory of shape evolution to achieve an 
accurate description of local atrophy in longitudinal images. 

In this paper, we introduce GeoLongSeg, a novel approach that in-
corporates geodesic shape regression into a deep learning network. The 
geodesic shape regression, a morphological evolution model capable of 
estimating smooth and continuous deformations of anatomical struc-
tures, is integrated with image intensity to enhance the precision of 
segmentation. The final segmentation of our method is verified to offer 
higher accuracy than other advanced methods, and local atrophy 
pattern based on this segmentation demonstrate the highest accuracy in 
detecting patients in early stage of dementia. 

2. Method 

The aim of this study is to propose a hippocampal segmentation 
method for better description of local atrophy in longitudinal 3T T1- 
weighted MR images. The overall framework, depicted in Fig. 1, consists 
of two stages of segmentation. In the first stage, the preprocessed lon-
gitudinal images undergo independent segmentation using a 3D U-Net 
network. Subsequently, the hippocampal labels obtained from this seg-
mentation are utilized to estimate the morphological evolution trajec-
tory through geodesic shape regression. This estimated trajectory then 
serves as input to guide the fine segmentation in the second stage 
network. By incorporating shape smoothness correction, the longitudi-
nal morphological variability caused by independent segmentation is 
effectively eliminated, ensuring a more precise and reliable outcome. 
The detailed methodology steps are described below. 

2.1. Data preparation 

The data used in this study are collected from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) public database (https://adni.loni. 
usc.edu). All participants have provided informed written consent 
before recruitment and filled out questionnaires approved by the 
respective Institutional Review Board (IRB). In order to ensure the 
generalizability of our network to both dementia and normal aging, we 

Fig. 1. The framework of GeoLongSeg. The input images are arranged in chronological order and undergo rigid registration for alignment. They are then fed into a 
first-stage network (3D Attention U-Net) to obtain rough segmentation results. The boundary surfaces are extracted from these results, and a geodesic morphological 
regression is utilized to estimate the trajectory of morphological changes. The estimated morphological surfaces are mapped back to the original image space and 
serve as the first channel input for the second-stage network (3D Attention U-Net), while the T1 images serve as the second channel input. The output labels are 
obtained as the final longitudinal hippocampal segmentations. 
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enroll individuals in progression of mild cognitive impairment to de-
mentia and age-matched cognitively normal (CN) individuals. Each 
participant experiences three 3T T1-weighted MRI scans, with an in-
terval of one year. We only select the patients diagnosed as dementia at 
their third visit. Therefore, the three scans of the patient group consti-
tute a two-year dementia progression. 

To construct the annotated longitudinal dataset, we randomly 
selected 15 participants, including 9 from the dementia progression 
group and 6 from the CN group. Additionally, 30 participants in de-
mentia progression and 30 CN participants are unlabeled data for 
evaluating the performance of our method. The demographic informa-
tion of the dataset is presented in Table 1. All the baseline images are 
rigidly registered to the MNI152 template using the ANTs toolkit 
(Avants BB et al., 2014). Subsequently, images of other time points are 
rigidly registered to their corresponding baseline. 

The training set is manually annotated according to the protocol of a 
high-resolution hippocampal data set from MNI-HiSUB25 (Kulaga-Yos-
kovitz J et al., 2015), which provides submillimetric T1- and T2- 
weighted images and stereotaxic probabilistic anatomical maps. The 
MNI-HiSUB25 segmentation is guided by consistent intensity and 
morphological characteristics of the densely myelinated molecular 
layer, along with a few geometry-based boundaries. When manually 
annotating images of the same subject at different time points, we 
consider the contour morphology of the baseline hippocampus as a 
reference to ensure morphological consistency across time. In other 
words, we consider both image intensity and baseline morphology in the 
longitudinal annotation. It is also worth noting that this protocol allows 
for the delineation of the detailed structure of the hippocampal head on 
3T images, which is an important region that has been found to be 
sensitive to dementia. 

2.2. Segmentation network 

In our study, we introduce a two-stage network approach for longi-
tudinal hippocampal segmentation. The initial stage focuses on inde-
pendent segmention of individual images, using a U-Net architecture 
(Fig. 2, stage 1). This choice is motivated by the U-Net’s effectiveness on 
limited training data. We employ the 3D U-Net network to guarantee 
smooth boundaries of the segmented hippocampi in three-dimensional 
space, which is crucial for morphological analysis. To enhance the net-
work’s sensitivity towards the hippocampal region, we incorporate an 
attention mechanism into the 3D U-Net architecture, following the 
approach of Oktay et al. (2018). Attention gate units are introduced 
within each skip connection’s concatenation process, illustrated in the 
lower panel of Fig. 2. 

Then, we introduce a shape regression method to estimate the 
continuous evolution of shapes based on discrete observations made at 
different times. The geodesic shape regression utilizes differentiable and 
invertible deformations to ensure smooth anatomical transformations 
within the ambient space (Fishbaugh J et al., 2017; Fishbaugh J et al., 
2013). Starting with an initial shape S0 at time t0, the shape gradually 
deforms to match target shapes Si observed at later times. The estimation 
process is formulated as a variational problem, balancing fidelity to the 

observed data with regularization, as outlined by a specific regression 
criterion. 

E(X0,φt) =
∑

i
D
(
φti (X0) − Oti

)
+Reg(φt) (1)  

where D represents a distance metric that quantifies the dissimilarity 
between shapes. Reg(φt) measures the regularity of the geodesic flow of 
diffeomorphisms φt. By applying the continuous geodesic flow of dif-
feomorphisms φt to the estimated anatomical configuration, we 
generate a temporally consistent sequence of shapes. To reduce the 
computational cost, we decrease the number of deformation field con-
trol points by assigning them to the vertices of the hippocampal 
boundary surface. After convergence, the deformed surfaces are mapped 
back to the original voxel space and serve as input for fine segmentation 
in the second-stage network. 

The objective of the second-stage network is to refine the indepen-
dently segmented results by leveraging the trajectory estimated through 
shape regression as a reference for fine segmentation. This strategy en-
sures that longitudinal segmentation considers both image intensity and 
temporal consistency. The architecture of the second-stage network also 
employs a 3D U-Net configuration with two input channels (Fig. 2, stage 
2). T1-weighted MRI structural images are fed into the first channel, 
while estimated labels are provided in the second channel. Finally, we 
perform a crop around the hippocampal region to mitigate the occur-
rence of false-positive segmentations outside the hippocampal area. The 
center of the hippocampal region, determined from the label generated 
by the previous stage network, is used as the crop center. 

2.3. Training strategy 

Our method is implemented using the PyTorch 1.6.0 framework and 
trained on a GPU (NVIDIA TITAN RTX 24G). The training process uti-
lizes the Adam optimizer. The loss function employs cross-entropy loss, 
and for a single sample: 

L = − [ylogŷ +(1 − y)log(1 − ŷ)] (2) 

where L represents the cross-entropy loss, y denotes the true labels of 
the samples, and ŷ represents the predicted probability of being a pos-
itive class for a given input （ŷ = P(y = 1|x). The initial learning rate is 
set to 0.001, and a weight decay of 10-8 is applied to prevent overfitting. 
The training is conducted for 300 epochs, with a batch size of 3 and a 
patch size of 144 × 144 × 144. 

2.4. Evaluation methods 

The anatomic structures should undergo smooth temporal changes in 
the context of disease progression, and it is important for longitudinal 
segmentation methods to mitigate any unsmooth errors (i.e., longitu-
dinal errors) introduced by imaging noise. Therefore, metrics for eval-
uating both the individual segmentation accuracy and the within- 
subject longitudinal consistency are necessary in the evaluation of the 
longitudinal segmentation method. We comprehensively quantify the 
segmentation accuracy of our method using various metrics that align 
with those reported in literatures, including the Dice coefficient, 
test–retest reliability, and variance ratio. Additionally, we evaluate the 
efficacy of our method in assessing hippocampal atrophy by detecting 
significant local atrophy in dementia patients at early stage, and test the 
classification accuracy of using these atrophic features. The details are 
outlined as follows. 

2.4.1. Metrics for evaluation of segmentation accuracy 
We use the Dice coefficient to evaluate the overall segmentation 

accuracy, calculated by 

Table 1 
Demographic information for the baseline data enrolled in this study.   

Groups Number of 
Subjects 

Gender (Male/ 
Female) 

Age 

Training 
set 

Dementia 9 4/5 75.2 ±
8.3 

CN 6 4/2 72.7 ±
5.4 

Testing set Dementia 30 19/11 75.8 ±
6.8 

CN 30 20/10 75.7 ±
7.1  
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Dice = 2
|X ∩ G|
|X| + |G|

× 100% (3)  

where X represents the segmented label and G represents the ground 
truth label. 

In addition, we use the evaluation strategies in line with previously 
published longitudinal segmentation methods (Shaw T et al., 2020; 
Tustison N J et al., 2020), including the test–retest reliability (also 
known as the overlap coefficient) and variance ratio, which reflect the 
longitudinal morphological consistency of the segmentation. The 
test–retest reliability is calculated by 

test − retestreliability = 2
|A ∩ B|
|A| + |B|

× 100% (4)  

where A and B represent the volume of labels at two different time 
points. 

The variance ratio is computed using a linear mixed-effects (LME) 
model. Intuitively, a good longitudinal segmentation exhibits larger 
between-subject variability and smaller within-subject variability. For 
each morphological measurement, a linear mixed-effects model is fitted 
by: 

Vst = kt+ hs + ε (5)  

where Vst represents the hippocampal volume, k represents the slope of 
the regression line, t represents the age, hs represents the bias introduced 
by each subject, and ԑ represents the residual. The variability between 
subjects is quantified by the variance of the individual biases τ. The 
variance of the residuals for all subjects is quantified by the residual 

Fig. 2. The network architecture is the 3D Attention U-Net. The left side represents the encoder part that extracts features, while the right side represents the decoder 
part which restores the size and generates segmentation results. The network employs attention gates, which producing a feature map that highlights important 
regions, and the output of these gates is connected to the upsampled output of the decoder part through concatenation. In the first stage, the network only inputs T1 
images, while in the second stage, the number of input channels in the network doubled, and the contour information of the hippocampus after geodesic regression 
was concatenated. Cropping operations were applied to preserve only the surrounding area images of the hippocampus. 
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variability σ. Then, the temporal consistency of each morphological 
feature can be quantified by dividing the between-subject variability by 
the residual variability: 

r =
τ
σ (6)  

A larger variance ratio indicates better consistency within individual. 

2.4.2. Evaluation of atrophy from the segmentation 
To assess longitudinal atrophy, we extract local morphological fea-

tures from segmentation utilizing the multiscale skeletal representation 
(m-s-rep) method proposed by Gao, N., et al. (2023). The method defines 
local thickness measurement on the hippocampus and exhibits superior 
performance in detecting hippocampal atrophy in the early stage of 
dementia. In this paper, we measure the atrophy from both spatial and 
temporal dimensions. The spatial atrophy is quantified by the relative 
atrophy in the patient group compared to the control group. The tem-
poral atrophy is quantified by the annualized decreasing rate of local 
thickness in individual hippocampi, calculated by the slope of linear 
regression of local thickness versus scan date. The statistical significance 
of intergroup differences is tested using general linear models. We set 
each measurement as the dependent variable, with group membership 
as the factor of interest and age as a covariate. Sex is included as an 
additional covariate for cross-sectional volume measurements. FDR 
correction for multiple comparisons is performed (Benjamini and 
Yekutieli, 2001). Cohen’s d is used to measure the effect size (d), which 
can be considered as small (0.2), medium (0.5), or large (0.8). 

To validate the effectiveness of features from GeoLongSeg segmen-
tation in assisting dementia detection in early stage, we applied a 
random forest model to classify patients with pMCI and healthy controls. 
We used a 5-fold cross-validation to avoid overfitting caused by 
improper data set partitioning. The classification performance was 
evaluated by sensitivity, specificity, accuracy, and the area under the 
receiver operating characteristic curve (AUROC) on the testing set. 

3. Results 

We have conducted experiments to evaluate the accuracy of our 
proposed method in segmentation of longitudinal hippocampi, while 
also assessing the effectiveness of the method in evaluating hippocampal 
local atrophy during the dementia progression. The accuracy of longi-
tudinal segmentation can be evaluated from two dimensions. Firstly, the 
accuracy of the overall morphology of the segmentations is quantita-
tively assessed by comparing them with annotated ground truth labels, 
using the Dice coefficient as a metric. Secondly, the test–retest reliability 
and variance ratio are employed to quantitatively measure the consis-
tency of longitudinal morphology. In addition, significant hippocampal 
atrophic features are computed in dementia converters based on the 
segmentations obtained from different methods. These features are then 
utilized to classify patients and controls. 

In our experiments, we select the four other advanced segmentation 
pipelines for comparison with our method: Synthseg (Billot B et al., 
2023), BrainLabel (Wei C et al., 2022), Freesurfer’s independent seg-
mentation pipeline (FSCross) (Fischl B et al., 2002), and Freesurfer’s 
longitudinal segmentation pipeline (FSLong) (Reuter M et al., 2012). 
The detailed results are presented below. The Synthseg, BrainLabel and 
FSCross are methods that employ independent segmentation on longi-
tudinal images, while the FSLong is a longitudinal segmentation mehod. 

3.1. Global segmentation accuracy 

To demonstrate the global segmentation accuracy of the proposed 
network, we conduct ablation experiments to assess the Dice coefficients 
of the single-stage and two-stage networks. In the case of the two-stage 
networks without integrated geodesic shape regression (stage2_ngr), we 
extract hippocampal surfaces from the initial segmentation (stage1) and 

utilize them as input to the secondary channel for the second-stage 
network. Following a five-fold cross-validation, the average Dice simi-
larity coefficients for each network segmentation outcome are 
computed, shown in Table 2. 

Notably, the single-stage network (stage1) exhibits the highest 
average Dice coefficient. The two-stage network employing geodesic 
shape regression (stage2_gr) achieves a higher Dice coefficient than the 
two-stage network without geodesic shape regression (stage2_ngr). The 
observed decrease in the Dice coefficient for stage2_ngr compared to 
stage1 is attributed to spatial deviations introduced during the conver-
sion of the hippocampal boundary to voxel contours. The average Dice 
coefficient of stage1 is slightly higher, within 0.003, than both 
stage2_ngr and stage2_gr. Despite this superiority in terms of the Dice 
coefficient, the evaluation of longitudinal morphological consistency is 
also necessary for a comprehensive evaluation. 

We further calculate Dice coefficients of the segmentations across 
time points, shown in Table 2. Among the results of the stage1, the Dice 
coefficient is the lowest at the second time point (tp1) and the largest at 
the third time point (tp2). The results of stage2_ngr exhibited a similar 
trend, with the lowest Dice coefficient observed at tp1 and the highest at 
tp2. However, with geodesic shape regression applied prior to the sec-
ond stage network, the Dice coefficient at the first two time points is 
enhanced, although the Dice coefficient at tp3 is slightly reduced. This 
observed pattern appears to align with the trend exhibited by the results 
of stage1_gr. Across all three time points, result of stage1_gr at tp1 has 
the highest Dice coefficient, which possibly enhances the final output of 
the two-stage network at tp1. 

3.2. Longitudinal morphological consistency 

The longitudinal morphological consistency is assessed from two 
aspects. The global longitudinal consistency quantifies the smoothness 
of overall morphologic changes over time, and the local longitudinal 
consistency characterizes the smoothness of temporal changes at spe-
cific spots. Additionally, to ensure the generalizability of our method, 
we conducted the experiment in both the dementia and CN groups. 

3.2.1. Global longitudinal consistency 
The global longitudinal consistency is evaluated by the test–retest 

reliability and global variance ratio. The distributions of the test–retest 
reliability for the five methods in each group are shown in Fig. 3. We 
observe that the average test–retest reliability improved after incorpo-
rating geodesic regression. In addition, the distribution of test–retest 

Table 2 
Average Dice Coefficients for comparison of intermediate and final results in our 
proposed segmentation network.  

Pipeline stage1 stage1_gr stage2_ngr stage2_gr 
(GeoLongSeg) 

Dice coefficient 
(all time points) 

0.8758 
±

0.0113 

0.7836 ±
0.0580 

0.8734 ±
0.0106 

0.8747 ±
0.0108 

Dice coefficient 
(tp 0) 

0.8745 
±

0.0147 

0.7794 ±
0.0567 

0.8773 ±
0.0106 

0.8751 ±
0.0115 

Dice coefficient 
(tp 1) 

0.8690 
±

0.0038 

0.7911 ±
0.0633 

0.8657 ±
0.0041 

0.8712 ±
0.0136 

Dice coefficient 
(tp 2) 

0.8839 
±

0.0060 

0.7850 ±
0.0524 

0.8812 ±
0.0040 

0.8778 ±
0.0029 

Abbreviations: stage1, segmentation results from the first stage network; 
stage1_gr, segmentation results of directly performing geodesic shape regression 
on the segmentation labels of the first stage; stage2_ngr, segmentation results 
from the second stage network without geodesic shape regression guidance; 
stage2_gr, segmentation results from the second stage network with geodesic 
shape regression guidance; tp, time point. 
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reliability for the final output of the second-stage network (stage2_gr) is 
more concentrated than that of the stage1 and stage2_ngr in the two 
groups. This observation suggests that the final network output exhibits 
a higher degree of longitudinal consistency and stability. 

It can be observed that our method achieves the highest average 
test–retest reliability among the other methods evaluated. It is worth 
noting that the Freesurfer cross-sectional method (FSCross) exhibits the 
lowest test–retest reliability, while the Freesurfer longitudinal method 
(FSLong) demonstrates an improvement compared to the FSCross. In the 
dementia group, our method shows a comparable compactness of dis-
tribution to the FSCross, FSLong, and Synthseg. Althoug results of the 
Brainlabel exhibits the most compact distribution, it has relatively low 
average test–retest reliability. In the CN group, our method achieves a 
comparable level of concentration in the distribution of test–retest 
reliability compared to other methods. 

We also observe that the test–retest reliability of the dementia group 
has lower average and larger variance than that of the CN group. This is 
probably because that the dementia group exhibits more pronounced 
and different extent of hippocampal atrophy compared to the CN group, 
leading to lower degree of overlapping between labels of two adjacent 
years in the dementia group. 

The volumetric variance ratio serves as another metric to assess the 
overall longitudinal consistency. A higher value indicates better longi-
tudinal consistency, whereas a lower value signifies poorer consistency. 
The results of our tests for different segmentation methods are presented 
in Table 3. Notably, the volumetric variance ratio of the two-stage 
network incorporating geodesic shape regression (stage2_gr) demon-
strates an improvement compared to that of stage1 and stage2_ngr, 

which did not employ geodesic shape regression. Furthermore, the 
output from stage1_gr, which incorporates geodesic regression after the 
first stage, exhibits the highest longitudinal consistency. This observa-
tion is within expectations, as geodesic regression estimates the 
segmented shapes by solely considering morphological smoothness. 
However, the segmentation requires consideration of both the shape 
variation smoothness and the image intensity. As can be observed from 
the Table 2 that the Stage1_gr has poor segmentation accuracy, although 
it improves the longitudinal consistency. 

In both the dementia and CN groups, our method (stage2_gr) dem-
onstrates the highest volumetric variance ratio when compared to the 
other four tested methods. In the CN group, Synthseg exhibits a 
marginally lower volumetric variance ratio compared to stage2_gr, 
whereas in the dementia cohort, the difference is large. FSLong shows a 
greater volumetric variance ratio than FSCross, indicating better longi-
tudinal consistency. BrainLabel exhibits a much larger volumetric 
variance ratio in the dementia group than in the CN group. In contrast, 
our method exhibits a more consistent volumetric variance ratio across 
both groups. 

3.2.2. Local longitudinal consistency 
To evaluate local longitudinal morphological consistency of the 

segmentations from different methods, we calculate local thickness 
variance ratios at 1738 distinct locations on the hippocampal surface. 
The results are presented in Fig. 4, with the horizontal axis representing 
the 1–1738 locations on the hippocampal surface and the vertical axis 
representing values of the variance ratios. The different methods are 
differentiated by distinct colors and shapes. 

Fig. 3. Global longitudinal morphological consistency measured by the test-Retest reliability of the hippocampal segmentations from different methods in dementia 
and CN groups respectively. The results obtained from different segmentation methods are represented using different colors. The cross symbol denotes the average 
value. Abbreviations: stage1, segmentation results from the first stage network; stage1_gr, segmentation results of directly performing geodesic shape regression on 
the segmentation labels of the first stage; stage2_ngr, segmentation results from the second stage network without geodesic shape regression guidance; stage2_gr, 
segmentation results from the second stage network with geodesic shape regression guidance; FSCross, the Freesurfer independent segmentation method; FSLong, the 
segmentation method using the Freesurfer longitudinal pipeline. 

Table 3 
Volumetric variance ratio of different segmentation methods.  

Pipelines stage1 stage1_gr stage2_ngr stage2_gr (GeoLongSeg) BrainLabel FSCross FSLong Synthseg 

Dementia group  3.9584  7.4772  3.8459  8.1508  6.7269  3.1376  4.1478  7.7925 
CN group  8.8374  13.6687  8.5113  9.4329  1.5611  5.8979  7.8718  9.417 

Abbreviations: stage1, segmentation results from the first stage network; stage1_gr, segmentation results of directly performing geodesic shape regression on the 
segmentation labels of the first stage; stage2_ngr, segmentation results from the second stage network without geodesic shape regression guidance; stage2_gr, seg-
mentation results from the second stage network with geodesic shape regression guidance; FSCross, the Freesurfer independent segmentation method; FSLong, the 
segmentation method using the Freesurfer longitudinal pipeline. 
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We observed that the variance ratio of the segmentations can vary 
between the left and right sides, as well as across different groups. For 
instance, in the tail of the hippocampus, approximately at the horizontal 
axis scale of 500, the FSCross, FSLong, Synthseg, and BrainLabel 
methods exhibit higher variance ratios in the left hippocampus of the 
dementia group, whereas lower variance ratios are observed in the right 
hippocampus. A similar trend can be observed in the CN group. Also, in 
this region, the distribution of variance ratios of Synthseg in CN group is 
higher than those observed in the dementia group. However, overall, 
our proposed method shows the highest variance ratios across most of 
local locations compared to the other methods, and the FSLong shows 
higher variance ratios than the FSCross. 

We further calculate the means and standard deviations of the 
variance ratio, which are summarized in Table 4. We observe that 
GeoLongSeg exhibits the highest average variance ratio among all 
methods, but also has a larger variance. Except for FSCross in the de-
mentia group, in all methods, the CN group has a larger average variance 
ratio than the dementia group, indicating higher longitudinal consis-
tency in overall morphology, consistent with the conclusion in Section 

3.2.1. 
We evaluate the local morphological accuracy of different segmen-

tation methods by temporal changes of local thickness. Specifically, we 
randomly select a subject and test whether the bilateral hippocampi 
obtained using different segmentation methods exhibits consistent at-
rophy at specific locations with the ground truth. The results are 
depicted in Fig. 5, with warm colors indicating regions of decreased 
thickness and cool colors representing regions of increased thickness 
over time. 

Visual evaluation observes that both the shapes of segmentations 
from GeoLongSeg and BrainLabel are closer to the ground truth hippo-
campi. As expected, the segmentation from GeoLongSeg exhibits better 
similarity in the hippocampal head, whereas the segmentation from 
BrainLabel is more similar to the ground truth in the tail. The segmen-
tation from Synthseg displays some missing parts at the top of the hip-
pocampal tail and some redundant parts in the head. Conversely, the 
two Freesurfer segmentation methods introduce large sawtooth-shaped 
protrusions along the hippocampal lateral boundary, particularly 
evident in the segmentation using FSCross in the right hippocampus. 
The line charts in Fig. 5 show the longitudinal local thickness variations. 
It can be observed that our method exhibits the most consistent seg-
mentation of local atrophic regions that align with the ground truth. In 
contrast, segmentations from other pipelines exhibit thickness increases 
in some atrophic regions, which is inconsistent with the ground truth. 

3.3. Detecting patients in the early stage of dementia using local atrophic 
features of the hippocampus 

To confirm whether the improvement in segmentation by Geo-
LongSeg is more advantageous for discriminating dementia in early 
stage, we conduct a classification using significant spatiotemporal 
atrophic features between patients and normal controls. We only iden-
tify features that exhibited significant atrophy (p < 0.05) consistently 
across all time points, which we considered as significant spatial features 

Fig. 4. Local longitudinal morphological consistency measured by the thickness variance ratio of segmentations from different methods in dementia and CN groups 
respectively. The x-axis represents different locations on the hippocampus. The results obtained from different segmentation methods are depicted using different 
colors and shapes. 

Table 4 
Local thickness variance ratio of different segmentation methods.    

Dementia group CN group   

Left Right Left Right 

variance 
ratio 

GeoLongSeg 4.18 ± 
1.94 

4.13 ± 
1.91 

4.49 ± 
1.74 

5.00 ± 
1.87 

Synthseg 3.00 ±
1.47 

3.31 ±
1.51 

4.13 ±
1.58 

4.54 ±
1.65 

BrainLabel 1.79 ±
0.89 

2.02 ±
1.16 

2.23 ±
1.33 

2.60 ±
1.45 

FSCross 1.84 ±
1.06 

1.82 ±
1.07 

2.17 ±
1.28 

2.54 ±
1.24 

FSLong 1.68 ±
0.98 

2.19 ±
1.20 

2.38 ±
1.25 

3.59 ±
1.54  
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distinguishing dementia in two years preceding the dementia conver-
sion. Additionally, we calculate average atrophy rates of each morpho-
logical features over the two-year period using linear regression as 
temporal atrophy features. The statistical results are shown in the left 

columns of Fig. 6, with red indicating the Cohen’s d effect size. 
It can be observed that the local atrophy patterns vary across 

different segmentation methods. Specifically, analysis based on Syn-
thseg identifies a greater number of atrophic locations, whereas analysis 

Fig. 5. Local atrophy trajectories of different segmentation methods on a typical case. The stained regions on the hippocampus indicate deformations compared to 
the baseline morphology, with colors representing the degree of atrophy and expansion. Warm colors represent atrophy (<0), while cool colors represent expansion 
(>0). The line graph illustrates the deformation trajectories at different locations, with colors indicating the degree of atrophy and expansion. 
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based on BrainLable does not detect any significant atrophy. The results 
of FSCross and FSLong are consistent, both finding spatial atrophy in the 
head of the right hippocampus, as can be seen in the last two rows of 
Fig. 6. This indicates that the local thickness in this region of the hip-
pocampus is significantly less in dementia patients than in the control 
group. Our method also found significant temporal atrophy at almost the 

same position. This is similar to the atrophy pattern indicated by the 
results from Synthseg. Results from GeoLongSeg and Synthseg also 
reveal spatial atrophy in the superior lateral part of the left 
hippocampus. 

Note that the volumetric features incorporate both spatial and tem-
poral characteristics, namely, absolute volume and annualized change 

Fig. 6. Using different segmentation methods for local atrophy assessment in two years prior to dementia conversion, and classification based on significant local 
atrophic and volumetric features. The red regions on the hippocampus represent areas of significant atrophy in dementia compared to CN, observed consistently 
across three consecutive scans (spatial atrophy differences), as well as regions where dementia exhibits significantly greater hippocampal atrophy rate compared to 
CN (temporal atrophy differences). The color intensity indicates the degree of significance, measured by the Cohen’s d effect size. In the last column, red ROC curve 
represents the classification performance of both volumetric features and significant local atrophic features for the two groups of subjects. The blue curve represents 
the classification results using only volumetric features, while the green curve represents the classification results using only significant local atrophic features. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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rate. In the right column of Fig. 6, we present ROC curves for classifying 
dementia and CN individuals based on segmentations from different 
methods and different combinations of features (local atrophy + vol-
ume, volume, and local atrophy features). The accuracy, sensitivity, 
specificity, and AUROC are listed in Table 5. Since no significant atrophy 
feature is found in the segmentation results based on BrainLabel, only 
volume features are tested to distinguish between the two groups. 

As observed from the figure, the morphological features calculated 
from different segmentations have different performance in classifying 
the dementia and CN groups. Specifically, the volumetric features 
derived from FSLong segmentation demonstrate a superior ability to 
distinguish dementia compared to other methods. And the volumetric 
features outperforming both the local features and the combinations of 
the two. This observation suggests that, in the context of dementia 
classification, local features may serve as a limiting factor. Nevertheless, 
our methodology demonstrates that local atrophy features also 
contribute significantly to the classification. The results based on 
FSCross indicate that the inclusion of local features has little impact 
classification accuracy, but using only local features leads to low 
accuracy. 

In terms of the volumetric features, the Freesurfer Longitudinal 
pipeline (FSLong) exhibits the highest AUROC, while having compara-
ble accuracy to that of the Freesurfer cross-sectional pipeline (FSCross). 
Our method demonstrates comparable performance to the Synthseg. 
When using only local features for classification, our approach demon-
strates superiority across all metrics, followed by SynthSeg, with 
FSCross and FSLong performing comparably. The classification that in-
corporates both local atrophic features and volumetric features dem-
onstrates superior performance of the GeoLongSeg segmentation in 

terms ofaccuracy, sensitivity and AUROC compared to other methods. 

4. Discussion 

This paper introduces a novel hippocampal segmentation method 
based on 3T T1-weighted MRI for assessing morphological atrophy in 
the progression of dementia. The proposed method, GeoLongSeg, in-
tegrates geodesic shape regression into a 3D U-Net network, enhancing 
the accuracy of longitudinal image segmentation by improving intra- 
individual morphological consistency. To validate our method, we 
evaluate the Dice coefficient and longitudinal morphological consis-
tency of the segmentation results. The results demonstrate the superi-
ority of GeoLongSeg over independent segmentation by a one-stage 3D 
U-Net network and four existing state-of-the-art segmentation methods. 
Additionally, we conduct a comprehensive assessment of the hippo-
campal atrophy in dementia patients relative to normal controls using 
different segmentation methods. The results show that the features 
derived from GeoLongSeg segmentation achieve higher segmentation 
accuracy compared to other methods. 

4.1. GeoLongSeg improves atrophy measurement by enhancing 
longitudinal local segmentation of the hippocampus 

There are two dimensions of atrophy in the progression of dementia. 
At the individual level, hippocampal atrophy manifests as a gradual 
process over time, known as temporal atrophy, and is typically quanti-
fied through annual atrophy rates. At the group level, comparisons 
reveal significant volumetric or thickness reductions in the hippocam-
pus, known as spatial atrophy. Increasing evidence suggests that sub-
fields of the hippocampus are differentially affected by the progression 
of dementia, and some regions experience local atrophy at very early 
stage of the disease (Chauveau et al., 2021; Braak and Braak, 1997a; 
Dubois et al., 2014; Jack CR et al., 2010; Sperling RA et al., 2011; Weiner 
MW et al., 2015). Future research endeavors may potentially expand to 
establish a more comprehensive connection between these evidences 
and clinical imaging discoveries, to aid the early diagnosis of dementia. 
Against this background, accurate segmentation of the hippocampal 
morphology from longitudinal 3T T1-wighted MRI data is essential for 
capturing the continuous and evolving local atrophy patterns caused by 
disease. However, current hippocampal morphological studies in lon-
gitudinal MRI often use independent segmentations at each scan, by 
considering each segmentation as a discrete event. This may introduce 
intra-subject variability induced by MRI signal variations that unrelated 
to diseases (Dong MJ et al., 2021). This error in segmentation can result 
in potential over- or underestimation of atrophy and affect estimation of 
local atrophy trajectories. 

One approach to address the problem is to incorporate intra- 
individual morphological consistency in segmentation, such as the 
method used in Freesurfer longitudinal pipeline. The fundamental 
assumption underlying the method is that deforming a template tailored 
specifically to an individual subject to match each of the subject’s time 
point scans, more accurate results can be achieved compared to inde-
pendently deforming a generic template to each scan of the same sub-
ject. This approach actually enhances intra-individual consistency by 
reducing overall deformation errors. As expected, in our experiments, 
we observe that the Freesurfer longitudinal pipeline exhibits better 
longitudinal morphological consistency compared to the Freesurfer 
cross-sectional pipeline. However, the estimation of the segmentation 
solely depends on image intensity. Despite that the methods emphasized 
the errors inherent in MRI imaging when explaining the genesis of 
longitudinal errors, they fail to address the issue directly. Different from 
the above method, we hypothesize that the morphological variations 
observed in the image arise from a combination of deformations due to 
disease progression or aging, along with imaging noise. To mitigate the 
influence of image noise, we aim to achieve a balance between the image 
intensity and smooth deformation estimations in our method, thereby 

Table 5 
Results of inter-group classification using local atrophic features and volume.  

Volumetric measurements  

Accuracy Sensitivity Specificity AUROC 

GeoLongSeg 0.789 ±
0.010 

0.778 ± 0.019 0.800 ± 0.00 0.887 ±
0.011 

Synthseg 0.783 ±
0.000 

0.789 ± 0.019 0.778 ± 0.019 0.890 ±
0.038 

BrainLabel 0.761 ±
0.019 

0.7755 ±
0.019 

0.767 ± 0.033 0.804 ±
0.067 

FSCross 0.833 ± 
0.017 

0.833 ± 0.067 0.833 ± 
0.058 

0.880 ±
0.020 

FSLong 0.833 ± 
0.017 

0.856 ± 
0.051 

0.811 ± 0.039 0.929 ± 
0.017  

Local atrophy measurements  

Accuracy Sensitivity Specificity AUROC 
GeoLongSeg 0.861 ± 

0.010 
0.878 ± 
0.019 

0.844 ± 
0.019 

0.927 ± 
0.029 

Synthseg 0.789 ±
0.026 

0.756 ± 0.019 0.822 ± 0.051 0.877 ±
0.038 

BrainLabel − − − −

FSCross 0.744 ±
0.026 

0.711 ± 0.039 0.778 ± 0.019 0.840 ±
0.042 

FSLong 0.733 ±
0.050 

0.733 ± 0.067 0.7733 ±
0.033 

0.846 ±
0.022  

Local atrophy and volumetric measurements  

Accuracy Sensitivity Specificity AUROC 
GeoLongSeg 0.833 ± 

0.017 
0.844 ± 
0.019 

0.822 ± 0.051 0.911 ± 
0.028 

Synthseg 0.794 ±
0.026 

0.800 ± 0.058 0.789 ± 0.019 0.898 ±
0.031 

BrainLabel − − − −

FSCross 0.811 ±
0.051 

0.778 ± 0.039 0.844 ± 
0.077 

0.891 ±
0.023 

FSLong 0.794 ±
0.035 

0.833 ± 0.033 0.756 ± 0.039 0.901 ±
0.029  
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obtaining an optimal segmentation. 
Consistent with the metrics employed by literatures of other 

methods, we assess the Dice coefficient, test–retest reliability, and 
variance ratio of the segmentations from different approaches. We find 
that our method, using shape regression integrated two-stage network, 
achieves a better dice coefficient compared to which utilizes the shape 
regression as a post-processing technique for segmentation. Based on the 
Dice coefficients obtained from the segmentation outputs at each time 
point, the geodesic shape regression serves as a crucial intermediate step 
that balances the segmentation results across different observation 
points. Furthermore, our method demonstrates the best overall longi-
tudinal morphological consistency when compared to three advanced 
independent segmentation methods and one longitudinal segmentation 
approach. It is worth noting that the test–retest reliability and volu-
metric variance ratios of all the methods, except the BrainLabel, in CN 
group performs better than those in the dementia group, indicating 
inferior longitudinal consistency in dementia hippocampi. This suggests 
more complex deformation patterns occur in the hippocampus during 
disease progression than in normal ageing. 

Different from other literature, we conduct a comprehensive evalu-
ation of our method in terms of local morphology. This includes calcu-
lating the variance ratio of the local thickness of the hippocampal tail 
and assessing the atrophy progression of the hippocampus for an indi-
vidual subject. Among them, the observation of variance ratios around 
the hippocampal tail indicates that the accuracy of local morphology 
segmentation is not uniform bilaterally. Despite this, our proposed 
method demonstrates the highest variance ratio in most locations 
compared to other methods. We further demonstrate enhanced accuracy 
in detecting longitudinal atrophy in a randomly selected longitudinal 
hippocampus. Our method shows the most consistent segmentation of 
local atrophy regions with the ground truth. In contrast, other seg-
mentation pipelines reveal thickness increases in some atrophic areas, 
which contradicts the ground truth. Furthermore, both the Freesurfer 
cross-sectional and longitudinal approaches demonstrate unsmooth 
hippocampal boundaries, which are anatomically implausible. This 
issue requires particular attention in local morphology studies. 

In addition, from Fig. 5, we noted that the GeoLongSeg demonstrates 
a conservative estimation of atrophy in regions that should have 
exhibited pronounced local atrophy, identified by red in the first row of 
the figure. Also, it exhibits some overestimation in regions with subtle 
atrophy primarily in the edge of lateral posterior part of the hippo-
campus. This is attributed to errors in local segmentation. The principal 
challenge of our method in local segmentation lies in the accuracy of the 
geodesic morphological regression in estimating the location and 
magnitude of deformation. Additionally, the longitudinal hippocampus 
requires a surface rigid registration process prior to the morphological 
regression. The precision of the registration process influences the ac-
curacy of the morphological regression, potentially resulting in exag-
gerated or underestimated local atrophy identification. Future 
improvements should take into consideration both of these aspects. 

4.2. GeoLongSeg facilitates the discovery of local hippocampal atrophy 
patterns in dementia progression 

To demonstrate that our method generates more accurate segmen-
tations and thereby enhancing the measurement of local atrophy, we 
conduct an assessment of local hippocampal atrophy in patients at early 
stage of dementia. The identified local features are utilized to classify 
dementia patients and controls. This verification is based on the hy-
pothesis that improved longitudinal segmentation accuracy would lead 
to more informative features for disease classification. 

As shown in Fig. 6, statistical analysis based on different segmenta-
tion methods yields different significant atrophy distributions. The re-
sults obtained through Synthseg segmentation reveal more pronounced 
areas of atrophy compared to other methods. Results based on Geo-
LongSeg segmentation display similar atrophy patterns, but identify 

fewer positive locations. Classification based on these local features 
reveals that the features derived from Synthseg segmentation achieve 
lower accuracy compared to those of GeoLongSeg, suggesting the pres-
ence of some false positives in detecting significant atrophy. Results 
based on segmentations from FSCross and FSLong do not identify sig-
nificant local atrophy in the left hippocampus, and no temporal atrophy 
is found in the right hippocampus. However, FSLong exhibits significant 
spatial atrophy in the right hippocampus, which is consistent with 
Synthseg. Both methods yield comparable performance in identification 
of dementia in early stage, but they have lower performance than that of 
GeoLongSeg and Synthseg. This suggests that Freesurfer’s segmentation 
fails to adequately reveal atrophy on the left hippocampus. 

Interestingly, our results show different local atrophy patterns based 
on different segmentation methods. The results based on methods other 
than GeoLongSeg indicate that volumetric features have more advan-
tages than local features. For instance, the cross-sectional and longitu-
dinal pipelines of Freesurfer exhibit higher classification accuracy when 
using the volumetric features, whereas the accuracy decreases when 
incorporating local atrophic features. However, the local features 
derived from GeoLongSeg exhibit superior classification performance to 
other features, suggesting a negative impact of volumetric features in 
classification. Therefore, it remains unclear whether local atrophic 
features or volume contribute more to the dementia detection. To 
address this question, larger samples and more representative datasets 
should be used for further validation. 

4.3. Limitations 

This study has several limitations that should be acknowledged. 
Firstly, we annotate only a limited amount of data as the training set due 
to the labor-intensive manual labeling in longitudinal images. This may 
introduce bias and variability in the training data, potentially impacting 
the generalizability of the proposed pipeline. However, we believe that 
utilizing the proposed method for segmenting data from ADNI would 
still provide more reliable results compared to alternative methods. 
Secondly, the geodesic regression technique relies on the baseline 
morphology to estimate other observations, which necessitates high- 
quality baseline images. In cases where the baseline hippocampal seg-
mentation results exhibit significant morphological errors, it can 
potentially affect local atrophy assessment. Above limitations emphasize 
the need for future research to address these challenges and refine the 
proposed methodology. 

5. Conclusion 

This paper introduces GeoLongSeg, a novel method for longitudinal 
hippocampal segmentation in 3T T1-weighted MRI scans. By incorpo-
rating diffeomorphic geodesic guidance into a deep learning network, 
GeoLongSeg achieves improved accuracy and morphological consis-
tency within longitudinal hippocampi. Extensive evaluations on ADNI 
data are conducted to validate the proposed method’s effectiveness in 
assessing the progression of hippocampal atrophy in dementia. Geo-
LongSeg provides a deep learning network pipeline designed for longi-
tudinal MRI, offering precise and efficient segmentation for 
morphological studies of the hippocampal atrophy in dementia pro-
gression in the early stage. 
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